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Abstract

The estimation of forces and responses due to the nonlinearities in ocean waves is vital in the design of offshore

structures, as these forces and responses would result in the extreme loads. Simulation of such events in a laboratory is

quite laborious. Even for the preparation of the driving signals for the wave boards, one needs to resort to numerical

models. In order to achieve this task, the two-dimensional time domain nonlinear problem has received considerable

attention in recent years, in which a mixed Eulerian and Lagrangian method (MEL) is being used. Most of

the conventional methods need the free surface to be smoothed or regridded at a particular/every time step of the

simulation due to Lagrangian characteristics of motion even for a short time. This would cause numerical diffusion of

energy in the system after a long time. In order to minimize this effect, the present study aims at fitting the free surface

using a cubic spline approximation with a finite element approach for discretizing the domain. By doing so, the

requirement of smoothing/regridding becomes a minimum. The efficiency of the present simulation procedure is shown

for the standing wave problem. The application of this method to the problem of sloshing and wave interaction with a

submerged obstacle has been carried out.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Studies on the behaviour of waves and wave–structure interaction and problems in the presence as well as

in the absence of structures in the marine environment have been a topic of great interest for the past few decades.

Prior to the construction of marine structures the performance of the structures needs to be predicted. The predictions

can be carried out by numerical simulation or through physical model tests. Till the recent past, the emphasis

in understanding the behaviour of marine structures has been mostly through physical model tests, which require

large hydrodynamic testing facilities with a controlled wave generation system. Due to recent and rapid progress

in the field of computers and simulation techniques, numerical simulation of hydrodynamic processes and

development of the numerical wave flume (NWF) have become more popular and handy. The NWF has the

flexibility of reproducing several scenarios of the predefined wave characteristics and their interaction with
e front matter r 2006 Elsevier Ltd. All rights reserved.
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structures within hours, which otherwise in the case of physical model tests might take several days or even

months.

In NWF, the free surface nonlinearity should be taken into account to replicate laboratory conditions. There are two

different approaches that are being used for the simulation of nonlinear waves; they are ‘the frequency domain analysis

based on the perturbation method’ and ‘the time marching simulation’. Numerical modelling for a fully nonlinear wave

simulation is more significant than the analytical solution, in which it is tedious to work out above second order and is

hard to fit in to irregular boundaries. For the simulation of the time stepping problem, Longuet-Higgins and Cokelet

(1976) proposed a mixed Eulerian and Lagrangian (MEL) method. This methodology has been widely used by several

researchers for the simulation of nonlinear waves: the higher order BEM methods (Grilli et al., 1989; Boo, 2002), BEM

(Sen and Maiti, 1996; Ohyama, 1991) and FEM (Westhuis, 2001; Ma et al., 2001) are worth mentioning. Kim et al.

(1999) reviewed the recent research and development in the simulation of nonlinear waves in regard to numerical

implementations, methods of wave generation and absorption. Most of the conventional methods in use need

smoothing or regridding even for a wave steepness of about 0.05, except the Spline-BIEM as proposed by Sen and Maiti

(1996) using MEL.

Wu and Eatock Taylor (1994) solved a fully nonlinear wave problem that is based on the potential flow formulation

for fluid in a container, considering the velocity potential as an unknown (FEM) or both velocity potential and velocity

as unknowns [Mixed finite element method (MFEM)]. The advantages and accuracy of both the methods were

compared and they suggested that the MFEM is less accurate. A five-point smoothing technique (Longuet-Higgins and

Cokelet, 1976) was applied at each and every time step for the simulation of the waves, in order to rectify the mesh

instabilities. Westhuis (2001) adopted a polynomial function for the calculation of the velocity in which a correction

vector to the final velocity was adopted in order to minimize the drawbacks in the calculations using the global

projection method of Wu and Eatock Taylor (1994). The global projection method corresponds to re-sampling the

velocity at the Gauss–Lagrange integration points, from which a more accurate approximation of the velocity field can

be obtained, compared to the direct differentiation of velocity potential representations. Westhuis (2001) showed the

inaccuracy of the global projection method by linear stability analysis. A number of techniques (Clauss and Steinhagen,

1999; Ma et al., 2001; Turnbull et al., 2003) address the main drawback due to inaccurate recovery of velocity for

handling the simulation of nonlinear waves using FEM. Wu and Eatock Taylor (1995) showed that the FEM is more

advantageous than the BEM in the generation of fully nonlinear waves in terms of its computational efficiency and in

the accuracy of the results. A similar comparison has also been shown by Westhuis and Andonowati (1998). In order to

tackle wave–structure interaction problems, the wave characteristics have to be predicted by minimizing the smoothing

or regridding associated with the generation of steep waves close to breaking. In this paper, the ‘cubic spline’ has been

used as the velocity recovery technique that eventually minimizes the smoothing or regridding in the generation of

nonlinear waves. The following sections will deal with the governing equations and the velocity recovery approach, and

then results are given from a series of validation tests for standing wave, sloshing, wave propagation and its interaction

with submerged obstacles.
2. Formulation of the problem

2.1. General

The two-dimensional fluid motion is defined with respect to the fixed Cartesian coordinate system, Oxz, with the z-

axis positive upwards. The water depth h is assumed to be a constant. The fluid is also assumed to be incompressible

and the flow irrotational. Forces due to viscosity have been neglected. This simplifies the flow problem, that can then be

defined with Laplace’s equation involving a velocity potential Fðx; zÞ, satisfying

r2F ¼ 0. (1)

A potential flow in a rectangular flume with a wavemaker at one end and nonlinear free surface boundary conditions

is being considered. The schematic representation of the computational domain and the prescribed Neumann

and Dirichlet boundary conditions on the three boundaries (bottom, left and right) and at the free surface are shown in

Fig. 1.

Considering the flume bottom as flat and with no flow through it, we have

qF
qz
¼ 0 at z ¼ �h on GB. (2)
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Fig. 1. Computational domain with specified boundaries.
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The far field is a fully reflecting wall, leading to

qF
qx
¼ 0 at x ¼ l on G1. (3)

Motion of the wave paddle at the right end can be enforced by

qF
qx
¼ _xpðtÞ at x ¼ xpðtÞ on Gp, (4)

where xpðtÞ is the time history of wave paddle motion.

The nonlinear dynamic free-surface condition to be satisfied at the air-water interface can be written as

qF
qt
þ
1

2
rFrFþ gZ ¼ 0 on z ¼ Zðx; tÞ. (5a)

The kinematic free surface boundary condition can be written as

qF
qz
¼

qZ
qt
þ

qF qZ
qxqx

¼ 0 on z ¼ Zðx; tÞ. (5b)

The above equations are written in Lagrangian form, following Longuet-Higgins and Cokelet (1976), as

Dx

Dt
¼

qF
qx
;

Dz

Dt
¼

qF
qz

, (6a,b)

DF
Dt
¼

1

2
rF rF� gZ. (6c)

The Eulerian form of the free-surface boundary condition restricts the movement of the nodes in the horizontal

direction but allows only vertical motion, which is given by

qF
qt
þ

1

2
rFrFþ gZþ

qF
qz

qZ
qt
¼ 0,

qF
qz
¼

qZ
qt
þ rFrZ. ð7aÞ

Upon expansion, these can be written as

qZ
qt
¼

qF
qz
�

qZ
qx

qF
qx

,

qF
qt
¼ �

1

2

qF
qx

� �2

�
qF
qz

� �2
" #

� gZ�
qF
qz

qZ
qx

qF
qx

. ð7bÞ

This form is also known as the semi-Lagrangian approach, due to the restriction of nodes against motion in the

horizontal direction. The derivative of the surface elevation with respect to the horizontal coordinate (x) is calculated by



ARTICLE IN PRESS
V. Sriram et al. / Journal of Fluids and Structures 22 (2006) 663–681666
using cubic splines, which is similar to the calculation of horizontal velocity that will be discussed in the next section.

The advantage of this method compared to the Lagrangian form is that the process of regridding is not required due to

the restriction of nodes in the horizontal direction. In the literature, it is stated that for floating bodies or for handling

breaking waves, the Lagrangian approach is more suitable. For fixed structures, such as submerged obstacles or

multiple cylinders under nonbreaking waves, the semi-Lagrangian approach will be more appropriate than the

Lagrangian method. But, depending upon the problem, one can opt for any of the above methods.

For the initial condition ðt ¼ 0Þ, the free surface elevation Zðx; 0Þ and the velocity potential, Fðx; z; 0Þ at the free

surface are assumed to be zero for the wave generation problem in order to represent the free surface elevation at rest

during the start of the simulation.

The solution for the above boundary value problem is sought in this paper using the finite element scheme.

Formulating the governing Laplace’s equation subject to the associated boundary conditions leads to the following

finite element system of equations:Z
O
rNi

Xm

j¼1

fjrNjdOjj;ieGs
¼ �

Z
Gp

Ni _xpðtÞ dG�
Z
O
rNi

Xm

j¼1

fjrNj dOjj2Gs ;ieGs
, (8)

where ‘m’ is the total number of nodes in the domain and the potential inside an element Fðx; zÞ can be expressed in

terms of its nodal potentials, fj, as

Fðx; zÞ ¼
Xn

j¼1

fjNjðx; zÞ. (9)

Here, Nj is the shape function and n is the number of nodes in an element. In this paper, linear triangular elements and a

structured mesh have been adopted. The typical mesh structure at a particular time is shown in Fig. 2. The above

formulation is found to be effective in dealing with the singularity at the intersection point between the free surface and

the wave maker (Wu and Eatock Taylor, 1994).

2.2. Velocity recovery

In contrast with a linear formulation of the boundary value problem, the horizontal water particle velocity at the free-

surface here needs to be evaluated in order to extract the free-surface elevation at each time step. Once the velocity
Fig. 2. Typical mesh structure.
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potential is obtained by solving Eq. (8), the free-surface horizontal and vertical velocities can be evaluated. However,

the need for smoothing or regridding arises due to the inaccurate evaluation of the velocity from the velocity potential.

The direct differentiation of the velocity potential results in the approximation of the velocity field at an order lower

than the approximation of potential as

rF ¼
Xn

j¼1

fjrNj . (10)

To achieve a greater accuracy in velocity, several approaches are available, among them being the global projection

method (Wu and Eatock Taylor, 1994) and local finite differences (Cai et al., 1998; Westhuis, 2001; Clauss and

Steinhagen, 1999; Wu and Eatock Taylor, 1995). The application of the global projection method to the nonlinear free-

surface problem leads to unstable high frequency waves that will be discussed later. The local finite difference technique

will be more accurate compared to the global projection method, which however requires local smoothing or local

regridding. After obtaining the horizontal and vertical velocities, the new positions of the free surface and the velocity

potential are evaluated using Eqs. (6a)–(6c), respectively. The integration is carried out using the standard fourth-order

Runge–Kutta method that gives a more stable solution. The general procedure for the simulation is shown in Fig. 3.

The smoothing or regridding at each time step has to be minimized for the successful simulation of nonlinear waves to

avoid energy diffusion.

In order to minimize the need for smoothing or regridding, splines are used here for the velocity estimation, as they

provide a better approximation of the behaviour of functions that have abrupt local changes. Further, splines perform

better than higher order polynomial approximations. The efficient implementation of cubic splines as numerical

differentiation for the evaluation of the tangential velocity in the simulation of waves using the lower order BEM has

been adopted by Sen et al. (1989). The horizontal velocity is calculated by fitting a cubic spline to the ‘x’-coordinates

and f(x,z) values. The end conditions are considered as the natural spline condition. To evaluate the smooth first

derivative at the ith node, five nodes are considered (two nodes on either side of the ith node), in order to minimize the

effect of boundary constraints (natural spline condition).

Let us consider that fi, f 0i and f 00i are continuous over a given interval. Based on the continuity condition, we have

dxi

6
f 00i�1 þ

dxi þ dxiþ1

3
f 00i þ

dxiþ1

6
f 00iþ1 ¼

1

dxiþ1
ðf iþ1 � f iÞ �

1

dxi

ðf i � f i�1Þ; i ¼ 2; 3 . . . k � 1. (11)

The above equation leads to a set of (k�2) linear equations for the k unknown functional values, fi. The horizontal

spacing (dx) between the two nodes is a known parameter. The above stated equation is solved by using the tridiagonal

system of matrix assuming the second derivatives at the ends are zero, i.e., the natural spline condition. In the present

simulation, assuming f i ¼ fi, the derivatives at a particular node (f3) are found out taking two nodes on either side

ðk ¼ 5Þ as can be seen in Fig. 4 with the second derivatives ðf001 ;f
00
5Þ at the end nodes being set to zero. After the

evaluation of the second derivatives, the first derivatives can be estimated using Eq. (12) at the required node (f3),

which are derived in the intermediate steps of the cubic spline interpolation (Jain et al., 2003).

2f 00i þ f 00iþ1 ¼
6

dxi

f iþ1 � f i

dxi

� f 00i

� �
. (12)
Evaluate velocity potential (FEM) 

Recover velocity 

Update new free surface 

Smoothing/regridding

t = t + dt

Fig. 3. A general procedure for nonlinear simulation of waves.
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It should be noted that the above formula is valid only for calculating at the intermediate nodes and not at the end

nodes. At the wave board, the velocity is assumed to be the input velocity, and the velocity at the second node is

evaluated by interpolation between the wave board and the third node (which is found by the above method). Similarly,

at the end of tank the velocity is assumed to be zero. On the other hand, the vertical velocity can be estimated based on

the backward finite difference scheme taking advantage of distributing the nodes in a vertical line during mesh

generation (Turnbull et al., 2003). Consider fi as the velocity potential at the nodes corresponding to zi, where i ¼ 1, 2, 3

as shown in Fig. 5. The vertical velocity at the free surface node can then be obtained as

qF
qz
¼
ða2 � 1Þf1 � a2f2 þ f3

aða� 1Þðz1 � z2Þ
, (13a)

where

a ¼
z1 � z3

z1 � z2
. (13b)

When the nodes are equidistant (i.e., a ¼ 2), the above equation reduces to the standard backward finite difference

scheme.
2.3. Advantages and disadvantages

One of the main advantages of this cubic spline approach is its capability of estimating smooth first derivatives, which

minimize the requirement of smoothing/regridding when adopting the Lagrangian approach and smoothing in the case

of semi-Lagrangian approach, which will be discussed in the following section. On the other hand, Eq. (11) does not

hold good for the very steep wave fronts, as when the nearby nodes fall on a vertical line, this equation is singular.
3. Simulation and validation

3.1. Steep standing waves in a container

The present methodology of adopting cubic splines for the velocity recovery is adopted for the generation of standing

waves in a container, for which analytical and numerical solutions are presented by Wu and Eatock Taylor (1994).
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Let l ¼ 2h, where l is the length of the tank and h is the water depth. The initial water surface elevation is assumed as

Zi ¼
H

2
cos

2p
L

xi

� �
, (14)

where H is the wave height, L is the wave length and i is the free surface node index. From the given free-surface profile,

the wave propagation is initiated by no flow boundary conditions at the sidewalls of an impervious container and the

propagation is governed by Eq. (1).

A comparison of the simulated free-surface profile with results based on the global projection method (Wu and

Eatock Taylor, 1994) and the second-order analytical solution for H/L ¼ 0.05 and 0.1 is shown in Figs. 6 and 7. The

numbers of nodes used for both simulations are 65 in the horizontal direction and 17 in the vertical direction. The time

step adopted is 0.06 s with a Courant number 0.44 (Dommermuth and Yue, 1987). In these simulations, no smoothing

was found to be necessary when using cubic spline approximation on the free surface. However, Wu and Eatock Taylor

(1994) stated the need for smoothing in the global projection method (FEM). Due to this, the direct FEM algorithm

exhibits loss of energy compared to the present method, as can be inferred from the figures.

The CPU time required for the above-specified simulation by evaluating only the free surface velocity is 0.8750 s per

time step, whereas for evaluating velocity at all the grid nodes it is 1.2188 s per time step, and in the case of global

projection method this was 1.8438 s per time step. This simulation was carried out on a Pentium IV with 2.8GHz

processor. Thus, the present methodology is computationally inexpensive too.
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Fig. 6. Time history of the free surface profile at the centre of the container for steepness H/L ¼ 0.05: ________ , analytical (up to second

order); �, Wu and Eatock Taylor (1994); J, present simulation.
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Fig. 7. Time history of the free surface profile at the centre of the container for steepness H/L ¼ 0.1: - � -, analytical (up to second

order); ________, present simulation; �, Wu and Eatock Taylor (1994).
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3.2. Error analysis

An approximation in a modelling system can be assessed by examining the energy loss. To quantitatively examine the

energy conservation in the present formulation, a relative error analysis has been carried out. The error, which is, the

difference between the energy at the ith time steps and the initial energy in the container has been calculated. This has

been compared with the results of Westhuis (2001), the global projection method (Wu and Eatock Taylor, 1994) and the

analytical approach.

The simulation is performed using the initial condition defined by Eq. (14) for a steepness of 0.033 with the number of

nodes in the x and z directions being 31 and 11, respectively.

The total energy in the system is estimated from

EðtÞ ¼

Z l

0

Z Z

�h

1

2
rFk k2dz dxþ

Z l

0

1

2
ðhþ ZÞ2dx. (15)

The relative energy error (dEt) for this simulation has been calculated using

dEt ¼
EðtÞ � Eð0Þ

Eð0Þ � e0
, (16)

where E(t) is the total discrete energy at any time t, E(0) is the initial discrete energy in the container, 1
2
rFk k2is

the absolute of convective inertia term and e0 is the total potential energy in the system when Zi ¼ 0, i.e.,

e0 ¼
1
2
h2l.

The second-order analytical solution of wave history for the standing wave problem (Wu and Eatock Taylor,

1994), has been derived for the more general case that leads to the first- and second-order potential and the

surface elevation at each time step in the entire domain. The total energy is evaluated using Eq. (15) and the

integration is carried out numerically. A comparison between the present simulation and the analytical solution for

the wave profile at the centre of the container is shown in Fig. 8. The relative energy error (dEt) for the simulation

using the global projection method (Wu and Eatock Taylor, 1994) is presented in Fig. 9. The average relative

energy error is of the order of 2.8� 10�3. The comparison of relative energy error using the present simulation with

that of Westhuis (2001) and second-order analytical solution are depicted in Fig. 10. It is clearly seen that in

the proposed methodology and that of Westhuis (2001), the relative error is of the same order as the second-

order analytical solution. The average relative energy error is lower using the present method than that of

Westhuis (2001). Thus from the above two plots, it can be inferred that the global projection method (Wu and

Eatock Taylor, 1994) leads to relatively higher loss in energy, due to inaccurate recovery of velocity (leading to

some high frequency waves) and mesh instability. The present method has an average relative energy error of an order

of 1� 10�3.
1
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t g / h√

Fig. 8. Time history of free surface wave profile at the center of the container for the steepness H/L ¼ 0.033: ________, analytical (up to

second order); - - - - -, present simulation.



ARTICLE IN PRESS

5
Average Error

4

3

2

1

0

0 5 10 15 20 25 30 35 40
-1

× 10
-3

�E
t

t g / h√

Fig. 9. Relative energy error (dEt) in the energy using global projection method (Wu and Eatock Taylor, 1994).
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Fig. 10. Comparison of relative energy error (dEt): - - - - -, present simulation; �, Westhuis (2001); ________, analytical solution (up to

second order).
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Subsequently, the relative energy loss [rEt] with respect to the energy calculated from the second-order analytical

solution has been derived using

rEt ¼
EðtÞ � E2ðtÞ

E2ðtÞ
, (17)

where E2ðtÞ is the second-order energy at any time t.

A comparison of relative energy loss (rEt) between the present simulation, Westhuis (2001) and the global projection

method is shown in Figs. 11(a) and (b). It should be mentioned that the digitized result of Westhuis (2001) shown in the

earlier figure has been used for evaluating E(t) to estimate relative energy loss rEt. From the results it is clearly seen that

the energy loss in the present method is found to be of an order less than 10�4 compared to the other methods. The

error is found to accumulate with an increase in simulation time in all the methods.

3.3. Asymmetric sloshing problem

Asymmetric sloshing motion is considered in this section. The initial wave elevation for the two-dimensional test case

at t ¼ 0 is given by

Zðx; 0Þ ¼ a 1�
x

b

� �2
" #

e�ðx=gÞ
2

, (18)
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Fig. 11. (a) Relative energy loss (rEt) with respect to second-order analytical solution:- - - - -, Westhuis (2001); ________, present

simulation; (b) - - + - -, Global projection method (Wu and Eatock Taylor, 1994); ________, present simulation.
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where a ¼ 12m, b ¼ 53m and g ¼ 76m. The length of the tank is 160m and the still water depth is 70m. A comparison

of the wave simulation using the present scheme with that of Greaves et al. (1997) for the time history at x ¼ 60m is

presented in Fig. 12. It is to be mentioned that in all the above simulations, no smoothing or regridding has been carried

out unlike in most of the earlier studies (Wu and Eatock Taylor, 1994; Greaves et al., 1997). In the present study, based

on the new free-surface location, the mesh has been regenerated without any linear interpolation or cubic fitting. Thus,

this methodology gives a promising approach for the generation of waves with an oscillating paddle at one end, where,

the mesh movement is more critical for the generation of nonlinear waves.

3.4. Simulation of fully nonlinear waves

For simulation of regular steep waves, one end of the tank is considered to be a ‘piston’ type wave maker. The paddle

displacement xp(t) is given by

xpðtÞ ¼ �
S

2
cosðotÞ. (19)
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Fig. 12. Asymmetric sloshing time history at x ¼ 60 m: ________, present simulation; �, Greaves et al. (1997).
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Fig. 13. Comparison between nonlinear and linear wave simulation at 12m from the wave maker for a wave steepness H/L ¼ 0.0036:
________, nonlinear wave; �, linear wave.
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The velocity of the paddle is

_xpðtÞ ¼ o
S

2
sinðotÞ, (20)

where S is the maximum stroke of the wave maker and o is the angular wave frequency. It is well known that when the

wave steepness is very small, the waves follow linear wave theory. Hence, a comparison between the nonlinear and

linear wave simulation has been carried out. For simulating the linear waves, the free surface boundary condition

(Eqs. (5a) and (5b)) has been linearized. A comparison between linear and nonlinear wave simulation for very small

steepness of 0.0036, considering the stroke length, S ¼ 0.002 h and o ¼
ffiffiffiffiffiffiffiffi
g=h

p
, is shown in Fig. 13. It can be seen that

the influence of the nonlinear terms is negligible. Considering, S ¼ 0.2h and o ¼
ffiffiffiffiffiffiffiffi
g=h

p
, a wave with a steepness of 0.046

can be generated. A comparison of simulation with and without the nonlinear terms is shown in Fig. 14. The nonlinear

characteristics of the wave, i.e., steep crest and shallow trough, are clearly visible. A comparison of the present

methodology with that of Wu and Eatock Taylor (1995) is shown in Fig. 15. The number of nodes used in the present

simulation is 236 and 13 in the x and y directions, respectively. There were 1320 nodes in the x direction and 32 nodes in

the y direction, in the study of Wu and Eatock Taylor (1995). Thus, in the present simulation, the energy loss is lower
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Fig. 14. Comparison between nonlinear and linear wave simulation at 12m from the wave maker for a wave steepness H/L ¼ 0.046:
________, nonlinear wave; �, linear wave.
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Fig. 15. Free-surface elevation at 12m from the wave maker for steepness H/L ¼ 0.046: �, Wu and Eatock Taylor (1995); ________,

present simulation.

V. Sriram et al. / Journal of Fluids and Structures 22 (2006) 663–681674
than the earlier studies (as replicated by the reduction in free-surface elevation), by directly solving the problem without

any special treatments like smoothing or regridding.
3.5. Long time simulation

Any kind of smoothing technique introduces numerical damping, which is profoundly important for a long time

simulation. In order to test the damping mechanism in the present technique, the simulation is carried out over a long

time. Since the x-coordinate of the first node at the free surface is set to the position of the wave board, the horizontal

gap to the second node increases with an increase in time due to the Lagrangian motion characteristics. Hence, in the

case of nonlinear waves, as the steepness increases, due to mass transport the node movement would quickly lead to

instability of the mesh. To avoid instability, regridding of the mesh is required, following the suggestion of

Dommermuth and Yue (1987). Consequently, the energy loss would accumulate. In order to overcome this problem
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and to verify whether numerical damping is significant, the semi-Lagrangian approach is also considered. For small

steepness waves, the movement of the water particles will be minimum as far as the linear wave theory is concerned, as

shown in the comparison between the Lagrangian and semi-Lagrangian simulation in Fig. 16. In this simulation, a

ramp function is applied by multiplying Eq. (20) with tanh(t/6.3855). In a tank of length 60m and water depth as 1m,

the simulation is carried out with the wave height and wave period of 0.01m and 1 s, respectively. An excellent

agreement between the two methods for the free surface elevation at a distance of 20m from the wave board can be seen

in Fig. 16. The simulation time for this case is upto 60T (T is wave period). The free surface elevation at two different

positions for the wave height of 0.094m and wave period of 1 s using the semi-Lagrangian approach corresponding to

the steepness of about 0.06 are shown in Figs. 17(a) and (b). This simulation breaks down after 15T when using the

Lagrangian approach. It is found from the above test cases that the numerical damping is not encountered when the

present cubic spline approach is adopted. The regridding or smoothing is not required for the initial period of time

using the Lagrangian form. It is also noticed that up to a wave steepness of 0.06, the semi-Lagrangian form of

simulation does not require smoothing.
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Fig. 16. Free-surface elevation at 20m from the wave maker using two different approaches: - - - - -, semi-Lagrangian; ________,

Lagrangian.

0.06

0.04

0.02

-0.02

-0.04

0.06

0.04

0.02

-0.02

-0.04

-0.06

0

-0.06

0

0 40 80 120

η 
(m

)
η 

(m
)

t (g / h)√

0 40 80 120

t (g / h)√

(a)

(b)

Fig. 17. (a) Free-surface elevation at 20m from the waveboard for the steepness 0.06; (b) free-surface elevation at 35m from the

waveboard for the steepness 0.06.
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3.6. Long time simulation of focusing wave

The present methodology is also validated by comparing with the experimental results from Clauss and Steinhagen

(1999) for a long time wave simulation. The length of the tank was 200m and water depth was 4m in the experimental

set-up. The wave board motion with a sampling interval of 0.05 s is shown in Fig. 18(a). The duration of the simulation

is 120 s. For the numerical modelling, the number of nodes in the horizontal and vertical directions are taken as 501 and

21, respectively. The time step adopted is 0.05 s. The corresponding free surface elevation at various locations along the

tank is shown in Fig. 18(b). The figure shows an excellent agreement of the Lagrangian and Semi-Lagrangian

approaches with the experimental measurements. The focusing point of the transient wave at a very long distance

(126.21m) is also well predicted.

3.7. Interaction of nonlinear waves with a submerged structure

In order to minimize the wave energy transmission, a submerged trapezoidal structure or a submerged breakwater is

often deployed in coastal areas. The presence of this structure is felt by the wave while propagating over the structure

and undergoes wave deformation, with significant nonlinear energy transfer among different wave frequencies. The

above problem was dealt by Beji and Battjes (1993, 1994) both numerically and experimentally. It was concluded that

when the dispersion terms in the Boussinesq equation were not properly modelled, poor predictions of the waveform

resulted. The experimental set-up is shown in Fig. 19. The same domain is also numerically modelled in the present

paper with 1101 nodes in the horizontal direction and 12 nodes in the vertical direction. A regular progressive wave of

period 2 s and height of 0.02m is generated by the wave board. The time step adopted is 0.02 s. The comparisons of the

free-surface elevation with the experimental data at various locations over the up-slope as well as over the downward

slope are shown in Fig. 20, where x is measured from the wave board. The figure shows some good agreement between

the numerical simulation and the experimental results. At the upstream sides when the wave runs over and the waves

become steeper due to shoaling, the behaviour is predicted well. At the end of the downward slope, the comparison

between numerical simulation and experiment is not so good. The reason is that over the downward slope, the transfer

of wave energy between different frequency components is greater, which eventually results in turbulence. The

overestimation of trough level as in Fig. 20(f) was also noticed by the numerical model of Casulli (1999), which includes

viscous and nonhydrostatic pressure but neglects the turbulence effect. The snapshot of the mesh configuration at a

particular time step near the trapezoidal section is shown in Fig. 21.

4. Mesh convergence

Mesh convergence criteria can be deduced for fully nonlinear waves, by superimposing the wave time history at a

fixed location and by increasing the number of nodes on the free surface. Such a convergence study has been carried out

for the wave generation problem with a steepness of 0.046. The mesh convergence is examined with the number of free

surface nodes taken as 117, 194, 235 and 309, which correspond to 15, 25, 30 and 40 nodes per wavelength are shown in

Fig. 22(a). It can be observed that the profiles obtained using 25 and 30 nodes per wavelength tend to converge. Hence,

it may be said that a mesh-independent solution could be obtained for mesh numbers above 25 nodes per wavelength.

Similarly, for the temporal resolution, a mesh-independent solution has been carried out for time steps of T/15, T/30, T/

40 and T/50. It is observed from Fig. 22(b) that the mesh tends to converge for time steps lower than T/40.The

maximum and minimum Courant numbers adopted for the above simulations are 0.007 and 0.4, respectively.
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5. Conclusion

In order to model the nonlinear wave–structure interaction, a time domain approach is necessary. Various authors

have proposed different methodologies, which give a close agreement by adopting different smoothing or regridding

techniques in the simulations. These add viscous damping in the system and hence, reduction in amplitudes or loss in

energy. In the present study, the horizontal velocity is recovered using a cubic spline approximation. This has produced

acceptable results with minimized smoothing or regridding requirement. The relative energy error for the present

methodology compared with that of the second-order analytical solution is acceptable. The higher relative energy error

for the global projection method for this problem leads to unstable solutions, which need smoothing or regridding.

Comparison between linear and nonlinear waves has been carried out to study the effect of nonlinearity. The present

methodology compares well with existing published data. The simulation has also been carried out for a long time, to

show that the present approach does not introduce numerical damping, as one would expect using cubic splines.

The two different approaches, namely Lagrangian and semi-Lagrangian form, are carried out for longtime

simulations. By using cubic splines as a velocity recovery measure the energy loss is found to be less by calculating

smooth first derivatives up to a steepness of about 0.06 using the semi-Lagrangian approach; in fact the numerical error

increases over a period of time. The transient wave packet simulation using the present method predicts the highest

wave crest even after a long time and after travelling a long distance, as seen by comparison with the experimental

results of Clauss and Steinhagen (1999). The nonlinear dispersive wave effect due to a submerged trapezoidal structure

is also verified by comparing with published experimental results. It should be noted that smoothing or regridding is not

applied for the results quoted in this paper. The improved accuracy by using this scheme suggests that it can be used to

predict the sloshing motions in an excited tank and in various wave–structure interaction problems.
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